タイトル
     2024 年度 前学期  教養教育 日英区分 :英語 
  
Introduction to Data Science   
時間割コード ナンバリング 科目分野
LB1920 LB-1-DS0001-J 【教養教育】データ・サイエンス
担当教員(ローマ字表記)
  鈴木 裕之 [Suzuki Hiroyuki], 青木 悠樹 [Aoki Yuki], 寺嶋 容明 [Terashima Hiroaki], 片柳 雄大 [Yuta Katayanagi]
対象学生 対象年次 単位数
    2
授業の目的  
This course aims to cultivate handling data with appropriate methods in literacy level. Specifically, this course will introduce descriptive statistics to summarize characteristics of data.
 
授業の到達目標  
To operate software and computers for handling data.
To conduct data visualization with appropriate methods.
To summarize characteristics of data with calculating descriptive statistics via MS Excel.
 
ディプロマポリシーとの関連(評価の観点)  
○ A: Basic knowledge and understanding of various sciences subjects.
◎ B: The ability to think logically and creatively.
△ C: The ability to communicate effectively.
○ D: Gained a sense of social ethics and an international perspective.○
(◎ = Very important, 〇 = Important, △ = Subject to evaluation)
 
授業概要  
Data are stored without knowing it and something are decided by these data. The first step to data science is to learn characteristics of data and methods for processing. This course aims to acquire basic and general techniques for data science literacy though on-demand education using e-learning movies and web tests.
 
授業の形式(授業方法)  
This course includes lecture and exercise. Students learn them using movies and web tests on the LMS. One class is completed by means of watching the movies and answering the web tests within the designated period. For Qs and As related to classes, both Web service on LMS and in person discussion with teachers are available.
 
授業スケジュール  
1 Introduction to this course and settings for your environment
2 Information ethics, how to use Gunma Univ. library
3 Mechanism of computers
4 Information networks and services
5 Introduction of MS Excel I
6 Introduction of MS Excel II
7 Introduction of MS Excel III
8 Introduction to data science (organization of statistical data)
9 Visualization with graphs
10 Statistic measures of position
11 Statistic measures of dispersion
12 Relationship between data in multi-dimension through cross-tabulation
13 Causation and correlation, data preprocessing for real data
14 Distribution of the data for final exercise and its explanation
15 Submission of final exercise
 
授業時間外学修情報
「学修」とは授業と授業時間外の予習・復習などを含む概念です。1単位につき45時間の学修が必要です。
学則で定められている1単位の時間数は次のとおりです。
講義・演習    授業15~30時間、授業時間外30~15時間
実験・実習・実技
 
The learners can take e-learning exercises repeatedly within these time limits. The learners may take each web test only once during designated period.
 
成績評価基準(授業評価方法) 及び 関連するディプロマポリシー  
This course evaluates the learner as below;

・Web tests for each class 70% A,B, C, D
・final exercise 30% A,B.

In addition, receiving an e-learning for information ethics and getting a passing score of its web test are required. Submitting a report of the final exercise is also required.
 
受講条件(履修資格)  
Nothing special
 
メッセージ  
"Data Science" is considered be a science course and difficult. However, problem solving and decision making based on data are becoming necessary in all fields. In this course, we try to explain the concepts of applied fundamental in a simple manner, which is a further development of the "Data Science" course. This course will be useful for students in their future professional fields.
 
キーワード  
Statistics, Descriptive Statistics, Excel, Visualization
 
この授業の基礎となる科目  
Mathematics in high school
 
次に履修が望まれる科目  
Python for data science, Data science applications, Basics of Data Science and Machine Learning
 
関連授業科目  
 
教科書  
 
参考書  
参考書1 ISBN 978-4-06-523809-7
書名 教養としてのデータサイエンス
著者名 北川源四郎, 竹村彰通編 ; 内田誠一 [ほか] 著 出版社 講談社 出版年 2021
備考
 
教科書・参考書に関する補足情報  
 
コース管理システム(Moodle)へのリンク  
 
授業言語  
 
学生用連絡先  
【匿名アクセスではこの情報を閲覧できません。】
 
学生用メールアドレス  
【匿名アクセスではこの情報を閲覧できません。】
 
オフィスアワー (※教員が研究室に在室し、学生からの質問・相談等に応じる時間のことです。)  
【匿名アクセスではこの情報を閲覧できません。】
 
教員ホームページ  
 
関連ホームページ  
 
ページの先頭へ